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Abstract

Starting from the analysis of a levered firm’s capital structure, I show that corporate default
risk becomes measurable through the leverage effect, that is, the negative correlation observed
between stock returns and changes in stock volatility. In this model, the firm’s debt-to-asset
ratio governs the elasticity of default probabilities relative to equity prices. A large dataset
of S&P 500 firms and an extended timeframe (2008-2018) is used to examine the model’s
empirical implications. The impact of the corporate leverage in the transmission mechanism
between stock and credit default swap (CDS) markets is uniform across firms and robust to
market conditions. Equity and credit markets are more likely to be co-integrated when firms
employ a higher debt-to-asset ratio. Although the stock market generally dominates the price
discovery process, a small cluster of highly-leveraged firms exhibits a dominant CDS market
share. Under the effect of corporate leverage, the credit market attracts informed trading and
arbitrage resources.
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1. Introduction

Merton’s (1974) structural model of credit risk implies that individual stock and corporate debt
securities are reasonably close substitutes. The integration of credit and equity markets suggested
by the standard financial theory incites rational investors to bet on the convergence of these two
markets by arbitraging stocks against credit derivatives (Kapadia and Pu, 2012). The risk limits
to capital structure arbitrage strategies being low,! neither the equity market nor the credit market
should dominate the price discovery of credit risk. However, recent studies have shown that insider
trading may occur in the credit derivatives market and impound the price discovery process (e.g.,
Acharya and Johnson, 2007; Kryzanowski, Perrakis, and Zhong, 2017). Such breaches to market
efficiency raise the question as to which market attracts informed trading and arbitrage resources.

In this paper, I put forward a structural model of the leverage effect to interpret the dominance
of credit markets in the price discovery process. In this model, the corporate leverage governs
the transmission of price information between the credit and the stock market. When the firm’s
financial leverage is low, the informational content of the credit market is low and produces low-
intensity signals. As a result, credit traders are mostly noise or liquidity traders, and the bulk of the
price discovery process primarily occurs in the stock market, in line with multiple empirical studies
(e.g., Hilscher, Pollet, and Wilson, 2015). Conversely, when the firm’s financial leverage gradually
increases, rational and sophisticated credit investors acquire a gradual advantage in the gathering
and the processing of information related to the firm’s credit quality. As credit traders tend to
monopolize the incorporation of private information into prices, the transmission to the stock mar-
ket intensifies due to the effect of the corporate leverage. The shift in intensity then pushes stock
traders to chase the trend and morph into noise traders without their knowing. Everything happens
as if the corporate leverage made informed trading migrate to the credit market.

My structural model for price transmission draws on the following insight. Relying on the

economic concept of elasticity,” I focus on the elasticity of default probabilities relative to stock

IFor the limits to arbitrage, see, for example, Shleifer and Summers (1990) and Shleifer and Vishny (1997).
The term elasticity refers to situations where a change of 8% in a dimensionless financial quantity x generates a



prices. The intuition behind the credit-equity elasticity is that it conveys the joint correlation be-
tween changes in the firm’s market value and changes in the firm’s credit quality. Additionally, it
delivers the optimal hedge ratio sought by capital structure arbitrageurs.® The paper’s key result is
then as follows. The structural framework proves to be rich enough to link the credit-equity elas-
ticity to the elasticity of equity variance relative to stock prices. Simultaneously, the latter captures
the so-called “leverage effect™ as a linear function of the debt-to-asset ratio, one of the critical
indicators of the firm’s financial health. Consequently, a simple function of the firm’s financial
leverage turns out to encapsulate the signal for informed trading of the capital structure.

The model put forward offers far-reaching empirical implications. First, the credit-equity elas-
ticity hypothesis brings support to the presence of a long-run equilibrium relationship between a
firm’s credit spreads and equity prices. The intuition is that CDS and stock time series cannot
drift too far apart from the equilibrium because capital structure arbitrageurs will act to restore
the equilibrium relationship. By capturing the non-linear effect of the firm’s leverage, this co-
integrating vector is distinct from the linear combination of the credit spread and the stock price
already investigated in the literature (e.g., Narayan, Sharma, and Thuraisamy, 2014).

Second, the model provides new testable hypotheses concerning the price discovery process at
work in credit markets. If equity and credit prices are co-integrated, the permanent-transitory de-
composition of Gonzalo and Granger (1995) ensures that they must track a common long-memory
component, or efficient price (Hasbrouck, 1995). Meanwhile, an error-correction mechanism must
absorb transitory shocks to reflect arbitrage across equity and credit markets. By specifying the co-
integrated credit-equity system, our model allows computing the implicit efficient price of credit.
Each market’s contribution to the price discovery process then becomes accessible.

Third, as already underscored in the literature (Kapadia and Pu, 2012; Choi and Kim, 2018),
exogenous barriers to arbitrage such as funding constraints, liquidity risks, or short-sale impedi-

ments interfere with the co-movements in the equity and credit markets. This paper hypothesizes

change of 8% in quantity x¢ for a § close to 0.
3See Schaefer and Strebulaev (2008) for a study of the hedge ratios produced by structural models of credit risk.
4Coined by Black (1976), the term conventionally designates the negative correlation empirically observed be-
tween stock price returns and changes in volatility.



that the non-linear impact of the leverage effect may be one of the endogenous sources for the lack
of integration between the credit and equity markets.

This paper uses a large dataset of S&P 500 firms and an extended timeframe (2008-2018)
to examine the transmission of pricing information from the stock market to the credit default
swap (CDS) market. By identifying the genuine price innovations arising in the stock market, I
offer an empirical methodology to identify the non-linear impact of the financial leverage on the
information flow transiting to the credit market. This leveraged transmission mechanism to the
CDS market appears (i) more intense than a linear direct transmission channel, (ii) uniform across
firms, (iii) robust to market conditions.

Most firms in the sample reject the null hypothesis of no (leveraged-)co-integration between
their equity and CDS markets. The empirical analysis shows that entities are more likely to be co-
integrated when (i) they belong to a business sector perceived as more leveraged; (ii) they employ
a higher debt-to-asset ratio; (iii) their CDS price is more volatile. These findings provide evidence
that an increase in financial leverage ramps up market activity in capital structure arbitrage. One of
the indirect market effects of corporate leverage is thus to intensify the integration between credit
and equity markets.

For those firms which are significantly co-integrated, this study draws on the vector error-
correction (VECM) approach of Gonzalo and Granger (1995) to identify the respective contribu-
tions of each market to the price discovery process. The CDS market share appears to be low
and below 30% for the vast majority of firms, consistent with the CDS “sideshow” hypothesis
(Hilscher, Pollet, and Wilson, 2015). However, a small cluster of highly-leveraged firms exhibits
an extremely dominant CDS market share close to 100%. This new finding provides reliable evi-
dence for the role of the leverage effect in the price discovery process.

This paper relates to the vast empirical literature that investigates the price discovery process in
credit markets. The conventional view states that credit pricing information primarily flows from
stock markets to credit markets due to lower transaction costs (e.g., Hilscher, Pollet, and Wilson,

2015). The alternative view underscores the role of private information in the flow of pricing



information from credit markets to stock markets (e.g., Acharya and Johnson, 2007). The most
recent literature suggests that both credit and equity markets should potentially lead and lag the
other market (Forte and Pefia, 2009; Marsh and Wagner, 2016; Lee, Naranjo, and Velioglu, 2018).
By studying the endogenous, non-linear impact of the firm’s capital structure, this paper departs
from a work of literature mainly focused on exogenous and linear transmission effects.

The article proceeds as follows. Section 2 contains the main theoretical contribution, while
Section 3 discusses the economic implications of the theory. Section 4 describes the data used in

the empirical analysis developed in Section 5. Finally, Section 6 concludes the article.

2. The Model

I now introduce a simple structural framework to build a new approach to the leverage effect.

2.1 Structural framework

We start with a basic structural model of the firm in the vein of Black and Cox (1976), Leland
(1994, 1998), Leland and Toft (1996). The firm’s unlevered asset value V = (Vt)% evolves accord-

ing to a geometric Brownian motion which is defined on a complete probability space (Q,.%,P):
dv, = p, V;dt + 0, V;dB;, (1)

where p, is the asset growth rate, § > 0 is the net cash outflow rate from the firm paid to stock-
holders, 63 is the instantaneous variance of the return on the firm, and B; is a Brownian motion.
Fully-informed managers operate the firm and have access to the complete information filtration
Fii=0{Vy:s <t}

The firm has issued two types of financial claims: equity and an amount of debt interest and
principal. Debt is issued to benefit from the tax shield offered at the constant tax rate 6 € [0;1].
We model it as a consol bond, which is paying interests indefinitely at some constant coupon rate,

¢ > 0. The optimal amount of debt and its coupon rate may be chosen at time 0 by the structural



planners, depending on the initial firm valuation. The considered company is subject to default risk,
and the stopping time of the firm’s default is 7, := inf{r > 0:V; <V, }, where V, > 0 is a default
boundary to be endogenously determined later by having the shareholders optimally liquidate the
firm. The rule of absolute priority governs the distribution of assets to bondholders in case of
liquidation. Liquidation costs are assumed to be a proportion of the remaining asset value V.
Fully-informed managers of the firm are the agents of equity shareholders. They are entrusted
with the strategic choice of optimally liquidating the firm for the benefit of stockholders. As we
do not consider agency costs of equity, the managers choose a liquidation policy modeled as an

(#;)-stopping time T, to maximize the residual asset value of the firm at time ¢:

S;= sup E { / " ) 8V, + (0 — 1)c)ds‘ﬁ,} : )
,€T t
where .7 is the set of (.%;)-stopping times. Under the technical assumption that the expected
asset growth rate u, is below the risk-free rate, Duffie and Lando (2001) solve the optimal control
program (2) to find explicit functions for the endogenous default boundary, the optimal equity
value, and the value of debt.
To obtain a first passage default model consistent with a reduced-form representation, I follow
Duffie and Lando (2001) by assuming noisy accounting information. I assume that debtholders,
contrary to the firm’s managers, have only access to incomplete accounting information on the
state of the firm value V. More precisely, the investors in the secondary debt market have access to
the following pieces of information:
* Noisy accounting information. At selected reporting dates #1, f;, ..., the bondholders have
access to a noisy accounting report of assets, ‘A/t

* Default state of the firm. At each time ¢, the debtholders know whether the firm managers
have liquidated the firm and bankruptcy has taken place. They observe and use rationally the
default indicator process 1{73 <t}-

At each time ¢, the information filtration available to the bond market is thus given by the o-



algebra ¥, := o { (Vt”f/tp . 7‘7tn) , 1{TB<S} ]0 <s < t} C .%;, where t, is the latest noisy reporting
date before . As shown by Giesecke (2006) in a more general setting, the imperfect observation
of the firm’s assets naturally yields a ¢;-intensity process A of the default stopping time 7.

I now turn to the structural analysis of the leverage effect. The next formulation of the leverage
effect is a simple consequence of our structural framework. It provides a preliminary link between
the logarithmic slope of the equity local volatility surface and an adjusted value of the firm’s

corporate leverage.

Lemma 1. The logarithmic slope of the equity local volatility surface, 6(S;,t), is linked to the

Jfirm’s financial leverage by the relationship:

=—0-(l—¢), 3)

g = — 4)

where subscripts denote partial derivatives with respect to the firm’s asset value V. Moreover:

g =0,

(a) lim ’

V—oo

(b) 11mV_>VB € =3,

(c) &, is continuous and bounded over [V,;);

(d) Except for states of the firm close to default (V =~ V), numerical simulations indicate that
€, K L. In these conditions, the slope of the equity instantaneous volatility surface is deter-

mined by ¢ at first order in the firm’s leverage.

Proof. See Appendix A. 0

3The debt-to-asset ratio is specified with market values instead of book values. This modeling choice reflects not
only the firm’s tangible assets and working capital but also its intangible assets and growth opportunities.



2.2 Structural approach to the “leverage effect”

To substantiate the role of the firm’s financial leverage in the so-called leverage effect, limiting
oneself to Equation (3) presents serious shortcomings. Indeed, as it depends on the model of
the stock price dynamics, the local volatility surface is not observable in the market. It is thus
preferable to rely on a model-free formulation of the volatility surface. Let introduce the Black-
Scholes implied volatility 6, (K) for a given strike price K and given time to maturity T.% The
local volatility slope appearing in Equation (3) is known to be a good predictor of the asymmetry
of the implied volatility surface observed in options markets. More precisely, the local volatility
skew is twice as steep as the implied volatility skew for short times to expiration (see, for example,
Gatheral, 2006). However, as the following technical result derived by Hagan and Woodward
(1999) via singular perturbation theory shows, the assumption of short times to expiration may

safely be relaxed at a small technical cost.

Lemma 2 (Hagan and Woodward, 1999). Assume a time-separable instantaneous volatility sur-
face: o(S;,t) = a(t)o(S;). The instantaneous volatility surface c(-) may be inferred from the

volatility surface 6 (-) implied by the options market through the following affine transformation:

~ K 1 [T
. (K)=o (%) V7 / o2(s)ds, forall K,S>0. )
0

Proof. See Appendix B. [

Let define the slope of the implied volatility surface in the log-strike space as:

S aaT(K)
5 TInK) ©)

An immediate consequence of Lemma 2 is to provide a structural interpretation based on leverage

of the implied volatility “skew” %, that is, the negative relationship between implied volatility and

68T (K) is the volatility number to be input in the Black-Scholes-Merton model (Black and Scholes, 1973) in order
to match the European-style call price C(K,T) observed in the options market.



strike price.

Proposition 1 (Structural leverage effect). Assume a time-separable local volatility surface:
o (S;,t) = o(t)o(S;y). The slope of the implied volatility surface is linked to the firm’s debt-to-asset

ratio through:

~ O _

ZTz—E(E—eg) a,, (7)
where ( is the debt-to-asset ratio, & is given by Equation (4), and @, = % fOT o2(s)ds. The
variance-equity elasticity is then given by:

do?/c?
= =20 —¢g). 8
Proof. See Appendix C. [l

The alternate hypothesis traditionally advanced for the asymmetry of the implied volatility
surface (e.g., Bekaert and Wu, 2000; Wu, 2001) is the volatility feedback effect.” Notice how
Equation (7) captures the volatility feedback effect (increases in volatility imply increases in |§|)
on top of the leverage effect (increases in leverage imply increases in ]f|) In our current structural
framework, it is thus the role of the firm’s financial leverage to dampen or magnify a possible
volatility feedback effect.

In view of Equation (8), it comes as no surprise that some authors call the variance-equity
elasticity a “leverage coefficient” (Das and Sundaram, 2007), although the authors recognize that
“there is no direct interpretation of this parameter within the Merton framework.” The academic lit-
erature devoted to the constant-elasticity-variance (CEV) stock price process has rarely addressed

8

the practical problem of parameter estimation.® To the best of my knowledge, Equation (8) is

"The economic mechanism goes as follows. As an increase in stock market volatility raises expected stock returns
(Campbell and Hentschel, 1992), current stock prices then decline to adjust to these revised expectations. As a result,
an increase in volatility (¢ 1) is correlated with negative stock returns, thus raising the value of out-of-the-money stock
options and the implied volatility skew (|Z| 1).

8Beckers (1980) initiates an econometric approach to the variance-equity elasticity estimation. Schroder (1989)
is the first to outline the influence of the firm’s debt-equity ratio. More recently, De Spiegeleer, Schoutens, and Van
Hulle (2014) further elaborate upon it in the context of the modeling of hybrid securities.



the first theoretical result to provide an unambiguous structural estimate for the variance-equity

elasticity.

2.3 The credit-equity elasticity

To exploit the approach to the variance-equity elasticity developed in Section 2.2, I now intro-
duce a simple economic model to link default probabilities with equity volatilities. We reinforce
the assumption of financial market completeness by assume that equity options are continuously
tradeable within a significant range of exercise prices before the default event. A stock option trad-
ing continuum is needed to exhibit optional equity structures liable to replicate the main features
of a conventional CDS instrument. The ultimate purpose is to match the higher moments of the
implied volatility surface, such as the volatility “skew.”

If the positive correlation between CDS spreads and the levels and slopes of the implied volatil-
ity surface is well known from empiricists (e.g., Cremers et al., 2008), theoretical models that
account for this close empirical relationship are still lacking. It is possible, however, to rely on
sensitivity-matching analysis to get a better understanding of the links between default probabil-
ities and the dynamics of the implied volatility surface. Grounded in the replication of a CDS
instrument by an equity option structure, the following result provides a workable relationship

between the CDS spread and the implied volatility skew.

Lemma 3 (Zimmermann, 2015). Under the assumption of an stock option trading continuum, the
firm’s default probability on its debt at a given maturity T is linked at first order to the at-the-money

O,y > and the implied volatility skew, f,, as follows:

implied volatility,
)"T :k'aATM'|§T|7 )]

where the constant normalizing factor k is typically independent of the equity volatility and reflects

the expected recovery rate on the debt.

Proof. See Appendix D. 0

10



I now combine the insights from Proposition 1 and Lemma 3 to derive the main result of the

paper. We introduce the credit-equity elasticity defined as:

_dAJA

el = M (10)

The next result provides a structural estimate for the credit-equity based on the firm’s financial

leverage.

Proposition 2 (Credit-equity elasticity). Under the assumptions of a separable local volatility
surface and a stock option trading continuum, the credit-equity elasticity is equal to the variance-

equity elasticity and amounts to twice the firm’s adjusted financial leverage:
e, =—2({—g&), (11)

where ( is the debt-to-asset ratio and € is given by Equation (4). The case of an un-levered firm
(¢ = 0) is consistent with the Black-Scholes paradigm (e, = 0) in which the perfect de-correlation
between credit spreads and stock prices (e, = 0) means that the stock price process cannot reach

zero and that the default probability reduces to zero.

Proof. See Appendix E. [

3. Model Implications

In this section, I show that the model’s main result, Proposition 2, provides new refutable

hypotheses for future empirical research.

3.1 The credit-equity power relationship

The main implication of Proposition 2 is that over a small period Az, the firm’s default prob-

ability follows a power relationship relative to the stock price. Taking CDS spreads quoted in the

11



credit market as a natural proxy for default probabilities yields the relationship:

Z(f—é‘/)
St ) . (12)

CDS;J,.A; - CDS; : (
St

Notice how the power function captures the loose credit-equity de-correlation when stock prices
increase, and the sharp credit-equity re-correlation when stock prices fall. In contrast with al-
ternative parameterizations of credit spreads by stock prices based on logarithmic or exponential
functions, the power function also ensures sound boundary conditions when stock prices fall close
to zero or tend to infinity.” Another comparative advantage lies in the scalability of inputs, which
can be multiplied by any factor without altering relevant empirical aspects.'”

Figure 1 provides an empirical illustration of the credit-equity power relationship (12). The
scatter plots display 5-year CDS par spreads against common stock prices for General Motors and
Microsoft over the period 2011-2018. The monotonicity and the convexity predicted by Equa-
tion (12) are recognizable. When the equity market value rises significantly, the firm’s improved
financial health is expected to enhance its creditworthiness. As a result, default probabilities tend
smoothly toward a floor, as illustrated in Figure 1.b (Microsoft). Conversely, a significant fall in
the equity market value is expected to signal higher odds of financial distress. As a consequence,

default probabilities sharply increase, as illustrated in Figure 1.a (General Motors).

9The superior capability of power parametric functions for data fitting is not an isolated case in the financial
domain. Also known as the family of constant relative risk aversion (CRRA) in the economic literature, the power
family is widely used in economics and other social sciences (e.g., Wakker, 2008; Gabaix, 2009).

10For example, credit risk should be an invariant across the different quoting currencies of the firm’s common stock.
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Figure 1. Credit-equity elasticity

This figure plots weekly CDS par spreads (5-year, senior unsecured contract) against weekly closing prices for the
common equity. Time period: October, 2011 to September, 2018. Data source: Thomson Reuters.

(a) General Motors (2011-2018) (b) Microsoft (2011-2018)
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3.2 Co-integration and price discovery

Letting the time interval A7 grow in Equation (12) and taking the natural logarithm of both sides
suggests that the log-price of credit and the log-price of leveraged equity should be co-integrated.

The long-run equilibrium is:

In(CDS); = B, + B, x (£ —€,);In(Stock), +1;, (13)

where B, captures the equilibrium’s inception point, (1,—f3,)" is the co-integrating vector, and 1; is
a stationary random variable representing the dynamic behavior of the log-CDS-equity price ratio
(disequilibrium error). The economic intuition behind Equation (13) is that the log-prices of CDS
and leveraged equity should form a co-integrated system because both relate to the fundamental
value of credit risk. If the series drift too far apart because of market frictions, capital structure
arbitrageurs will act to restore the long-run equilibrium.

The co-integration of credit and equity markets has important implications for the price discov-

ery process of credit risk. The permanent-transitory decomposition of Gonzalo and Granger (1995)
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suggests that credit and equity prices share a common long-memory component, also referred to
as the efficient price (Hasbrouck, 1995). Additionally, if equity and credit prices converge in the
long run, there must be an error-correction mechanism reflecting arbitrage across both markets.
The error-correction mechanism should absorb the transitory shocks that have no permanent effect
on CDS and equity prices. As a result, either the CDS price or the stock price must be the first to
move permanently, that is, to reflect innovations in the efficient price of credit.

Two price discovery metrics have been proposed in the literature to assess the relative speed
at which a price series is the first to impound new information. The first approach initiated by
Hasbrouck (1995) focuses on the variance of the innovations in the efficient price. The information
share (IS) measures each market’s contribution to this variance. The IS metric attributes price
discovery to the market that first reflects innovations in the common factor. By contrast, the second
approach builds on Gonzalo and Granger’s (1995) insight that the common stochastic trend must
be a linear combination of the original price series. The component share (CS) measures each
market’s contribution to this implicit common factor. The CS metric attributes price discovery to
the market with the most substantial weight in the common factor (e.g., Baillie, Booth, and Tse,
2002; Hasbrouck, 2002; Yan and Zivot, 2010; Putnins, 2013), i.e., the market that adjusts least to

the other.

3.3 Information transmission between stock and credit markets

The credit-equity power relationship (12) provides new testable hypotheses concerning the
transmission mechanisms between stock and credit markets. Taking the logarithm of both sides of
Equation (12) and conditioning upon the information filtration %, available at time 7 to the credit

market participants yields the stock return expected by capital structure arbitrageurs:

(CDS return);

E [(Stock return), | ] = U=,
—&,);

(14)
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Later in Section 5.1, this paper tests the following transmission mechanism from credit to stock

markets suggested by Equation (14):

(CDS return),

Stock ret = —_
(Stock return), = a + 8 x 2W—¢)

+ €, 15)

where the intercept « captures stock return premia that cannot be explained by the integration of
credit and equity markets, the coefficient § measures the rate of transmission between markets, and
€; 1s the pure stock innovation arising in the stock market, independently from the credit market.
In this mechanism, the interaction between the firm’s leverage and the CDS returns constitutes the

signal which primarily matters to informed traders when filtering stock returns.

4. The Data

For this study, I consider daily closing CDS quotes for the most widely traded, North American
reference entities. To build as much as possible a large and representative CDS universe, I impose
three requirements. The first constraint is for bid-ask CDS quotes to be available in Thomson
Reuters over an extended 10-year sample period running from September 20, 2008, to November
1, 2018. In particular, the firm must not have undergone any major credit event (corporate default,
merger, or acquisition) leading to an early exit from the dataset over the sample period. The second
constraint is for the corresponding common stocks to continuously trade on the S&P 500 stock
index over the full sampling period. Finally, we ask for the historical leverage ratio to be available
in Thomson Reuters over the full sampling period. For all the reference entities satisfying the
previous three requirements, all the CDS quotes, stock market data, and leverage data are then
consistently retrieved from the Thomson Reuters database.!!

The final single name CDS list comprises a total of 204 corporate credits from the S&P 500

index. For consistency, I consider only CDS par spreads corresponding to U.S.-dollar denominated

contracts on the most liquid tenor (5 years), the lowest seniority (senior unsecured debt), and

""Mayordomo, Pefia, and Schwartz (2010) offer an in-depth comparative study of the Thomson Reuters database
and five other public sources of corporate CDS prices.
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the same restructuring clause (Modified Restructuring). Thomson Reuters provides end-of-day
prices by collecting daily single-name CDS quotes from over 30 contributors around the world and
applying a rigorous screening procedure to eliminate outliers or doubtful data. Final CDS quotes
are thus composite mid spreads calculated by Thomson Reuters and expressed in basis points. The
timing for the end-of-day composite calculation is in T+1 (5:00 am GMT). As this last update takes
place after the end of trading for U.S. stocks, there is no bias in detecting information flows from
stock markets to credit markets.

To measure the firm’s financial leverage, I use the ratio of total debt book value to enterprise

value:

Short-term Debt 4 Long-term Debt
Market Capitalization + Total Debt + Minority Interest + Preferred Stock — Cash’

(16)

A conservative approach to the financial leverage of financial institutions is in order. For banks,
customer deposits do not appear in total debt while cash on hand includes due from other banks.
For insurance companies, policyholders liabilities do not appear in total debt. The sample thus
comprises estimates of the debt-to-asset ratio over the period 2008-2018. Notice that the fluctua-
tions of the firm’s market capitalization on top of the changes in total debt book value entail daily
variations in the leverage data set.

Table 1 provides summary statistics for the CDS levels, the leverage data, and the characteris-

tics of the firms in the sample.

5. Empirical Analysis

In this section, I first provide empirical evidence for the effect of the firm’s financial leverage

in the transmission of price information from the stock market to the credit market.
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L1

Table 1. Descriptive statistics

The table reports summary statistics for firm characteristics (Panel A), overall equity and CDS returns (Panel B), and equity and CDS returns with opposite signs
(Panel C). The sample consists of 204 U.S. firms over the period September 20, 2008, to November 1, 2018, including only trading days with available CDS spread
observations and equity returns. Sample statistics are computed across all observations. Data source: Thomson Reuters.

5t perc. 251 perc. Median Mean 75" perc. 95" perc. SD  Observations
Panel A: firm-level statistics
Firm CDS level (mid-price, bps) 25 45 70 113 120 315 188 467,330
Firm leverage (debt to assets) 0.07 0.15 0.23 0.29 0.37 0.69 0.20 467,330
Firm size (mkt. cap., $bn) 4.59 11.29 22.29 44.55 48.51 178.32 58.49 467,330
Firm debt (book value, $bn) 1.34 341 6.73 27.85 13.51 99.11 88.92 467,330
Daily observations 974 2,320 2,499 2,291 2,515 2,520 453 467,330
Panel B: equity and CDS returns
Equity daily return (%) —2.82 —0.78 0.05 0.03 0.88 2.76 2.06 467,330
CDS daily return (%) -3.36 —0.10 0.00 —0.02 0.06 3.36 4.31 467,330
Panel C: opposite-sign equity and CDS returns
Equity daily return (%) -3.20 —0.91 0.03 —0.04 0.93 2.90 2.25 206,506
CDS daily return (%) —4.26 —0.75 —0.01 —0.02 0.21 4.53 4.49 206,506

Mean Mean Mean Mean

g Firms  CDS level (bps) leverage debt ($bn) size ($bn) Observations
Panel D: business sector-level statistics
Basic Materials 15 122 0.25 4.65 15.63 34,630
Consumer Cyclicals 32 160 0.27 9.49 27.72 79,126
Consumer Non-Cyclicals 23 63 0.21 11.13 52.07 56,099
Energy 18 108 0.23 10.82 62.68 40,033
Financials 36 136 0.44 107.49 47.96 74,178
Healthcare 21 61 0.19 11.17 62.96 48,218
Industrials 30 87 0.25 19.01 41.83 69,609
Technology 11 157 0.23 12.97 71.13 26,213
Telecommunications 3 147 0.41 65.74 120.96 5,884

Utilities 15 120 0.48 14.54 17.27 33,340




5.1 Identifying pure stock innovations

I first describe the methodology for identifying true innovations in the stock market due to
information revelation. For each firm, I run a regression of stock percentage changes on a constant,
four lags of CDS percentage changes to absorb any transmission of delayed information from
the credit market, and four stock return lags to capture any autocorrelation in the stock market.
To take the elasticity of CDS returns relative to stock returns into account as predicted by the
model and Equation (15), the specification also includes interactions of the CDS returns (both
contemporaneous and lagged) with the firm’s leverage. This approach starts from the conventional
view that credit pricing information primarily flows from stocks to CDS (e.g., Hilscher, Pollet, and
Wilson, 2015).

Specifically, I estimate the following specification for each firm i:

L
Bix

Pt (Leverage); ;

4
(Stock return);; = o + Z (CDS return);
k=0

7)

_|_

4
%i.k(Stock return); ,_x+ € .

k=1

I view the residuals ¢;, from each of these regressions as independent innovations arriving in the
stock market. These innovations are either not relevant or just not appreciated by the credit market
at the time. By contrast, the coefficients ;o and Bfo are akin to linear and “leveraged” measures
of the feedback information flowing from the CDS market to the stock market. This approach is
similar to the one by Acharya and Johnson (2007) who isolate CDS market innovations at time ¢
by controlling for both stock and CDS returns between ¢ and ¢ — k.

The contemporaneous linear response f3; o is statistically significant at the 5% level for 22% of
the firms. The contemporaneous leveraged response, ﬁf , 1s even more significant at 33%. For the

sake of robustness, I then consider the following aggregated measures:
. 4 . l
Bi:= Z Bi7k7 Bi = Z ﬁi,/@ (18)
k=0 k=0
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Table 2. Feedback information from CDS to stock markets

In the first stage, we run for each firm i the time-series regression:

4 14 4

i k

Stock return); ; = ; + ix+——= | (CDS return);,_x + : k(Stock return); ;_x+ €; 17
( )l,t i kgz) |Fz,k (Leverage),-,, ( )t,t k kg,] Vl,k( )t,f kT Cit a7
p-values are calculated via robust standard errors corrected for heteroscedasticity and serial correlation (Newey-West,
1987). In the second stage, firms are ranked into quintiles based on the first-stage estimates of §; = Zi:o Bix (resp.
Bf = ZQ:O ﬁfk), QI being the quintile with the smallest (most negative) estimates and Q5 being the quintile with the
largest estimates. The summary statistics reported for each quintile are the medians (across firms) of the time-series
means of the characteristics for each firm. Within each quintile, p-values across firms are combined via Fisher’s sum
of logarithms method. ***, ** and * denote statistical significance at the 0.1%, 1%, and 5% levels, respectively. Data
source: Thomson Reuters.

QI Q2 Q3 Q4 Q5
Panel A: Properties of firms in different B-quintiles
Median S; —0.335 —0.126 —0.022 0.136 0.463
Within-quintile p-value 0.000*** 0.011** 1.000 0.851 0.000***
Median CDS level (bps) 102 77 66 69 81
Median firm leverage 0.29 0.19 0.20 0.23 0.36
Panel B: Properties of firms in different ﬁé-quintiles
Median ﬁf —1.687 —0.946 —0.523 —0.112 0.364
Within-quintile p-value 0.000*** 0.000*** 0.000%** 0.999 0.014*
Median CDS level (bps) 68 82 96 76 80
Median firm leverage 0.23 0.27 0.26 0.25 0.21

These measures capture the overall feedback information flowing from the CDS market to the stock
market at the firm level. The aggregated linear response f3; remains significant at the 5% level for
only 18% of the firms. However, the level of statistical significance of the aggregated leveraged
response ﬁf now rises to at least 49% of the firms. This gap in the level of statistical significance
stands a first hint as to the role of the leverage effect in the feedback price transmission from credit
markets to stock markets.

Table 2 sorts the firms into quintiles based on their aggregated response and examines the
average characteristics for firms within each quintile. Panel A of Table 2 shows that the linear
aggregated response fB; can be positive, in stark contrast with structural models of default risk.
Neither the CDS level nor the leverage appears to vary much across quintiles. When combining
p-values within quintiles, only the lowest and the highest quintiles display statistical significance.

By contrast, Panel B of Table 2 shows that the aggregated leveraged response ﬁf is negative for
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most firms, in line with structural models of credit risk. Moreover, the high degree of combined
statistical significance is almost uniform across quintiles. In this sense, 3; and Bf appear as com-
plementary measures of the feedback transmission channel existing from the CDS market to the

stock market.

5.2 Evidence of leveraged information

I can now exploit the stock price innovations identified in the previous section to study the in-
formation flow from stock markets to credit markets. To bring to light the leverage effect predicted
by the model and Equation (15), the specification of expected CDS returns includes interactions
of the stock returns (both contemporaneous and lagged) with the firm’s financial leverage. The
specification also contains four lags of CDS percentage changes to purge the credit market of any
residual autocorrelation. Finally, I allow the information flow to vary conditionally to specific
market conditions.

More specifically, I estimate the following panel specification by pooled regression:

4 4
(CDS return); = a+ Z bf(Leverage)t(Stock innovation),_ + Z ck(CDS return),_x +e¢;, (19)
k=0 k=1

where the first-stage residuals €; , provide a proxy for the real stock innovations. The linear combi-
nation 22:0 b£ offers a measure of the “leveraged” information flowing unconditionally from the
stock market to the credit market. The stock market direction allows to condition specification (19)
by using separate regression coefficients on the positive and negative part of each of the five lagged
stock innovation terms. Similarly, conditioning upon stock innovation intensity enables to obtain
more granular insights into the leveraged information flow.

Table 3 reports estimates for the specification (19). The main finding here is that the overall
flow of leveraged information from stock to credit markets is highly significant at the 0.1% thresh-
old. The measure has the awaited negative sign predicted by structural models of credit risk. Its

value (—0.462) is significantly higher than the flow of direct, unleveraged information (—0.310).
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Table 3. Leveraged information from stock to CDS markets

This table reports OLS panel estimates and ¢-statistics for the coefficients of the following pooled regression:

4 4
(CDS return); = a+ Z {bk + b} (Leverage), + bi’D (Leverage), (Dummy), | (Stock innovation), 4 + Z ck(CDS return),_; + e (19)
k=0 k=1
The first column reports the baseline model (no leverage, no dummy). Column (A) reports unconditional estimates (no dummy). Column (B) reports estimates
conditioned on positive stock innovations (¢ > 0) and negative stock innovations (¢ < 0). Column (C) reports estimates conditioned on positive stock innovations
in the top decile and negative stock innovations in the lowest decile. Column (D) reports estimates conditioned on CDS levels in the lowest quintile Q; (< 40
bps), medium quintiles, and the top quintile Qs (> 142 bps), respectively. Column (E) reports estimates conditioned on the leverage in the lowest quintile Qq
(< 0.14), medium quintiles, and the top quintile Qs (> 0.41), respectively. 7-statistics in parentheses are calculated via firm-clustered standard errors corrected for

heteroscedasticity and serial correlation. ***, ** and * denote statistical significance at the 0.1%, 1%, and 5% levels, respectively. Data source: Thomson Reuters.
Baseline model (A) B) © (D) (E)
a —0.0001 —0.0001* —0.0003*** —0.0004*** —0.0001* —0.0001
(—1.61) (=2.11) (—4.11) (—3.38) (=2.04) (—1.69)
Yi_obx —0.310%*
(—50.22)
Yi_obl —0.462%*
(—34.86)
Yi o b" —0.397" —0.4377
(—24.73) (—8.30)
Yi by 0P —0.358%*
(—17.23)
Yi bt —0.511% —0.796"*
(—33.12) (—15.40)
22:0 bi,%<07 lowest _0.498***
(—24.95)
Yi b 2,424+ _2.816"
(19.19) (—14.39)
v by 04447 —0.341%
(—30.48) (—23.97)
Yo% —0.747"* 1215
(—22.90) (—32.74)
XLO Ck 0.039*** 0.045*** 0.044** 0.044** 0.044** 0.043***
(9.48) (16.45) (16.25) (16.26) (16.15) (15.67)
Obs. 455,690 455,690 455,690 455,690 455,690 455,690




Moreover, this finding is robust when conditioning upon the stock market direction. Column (B)
shows that both the responses to positive and negative lagged innovations keep negative signs and
the same magnitudes. The finding is also robust to the intensity of the stock information flow.
The distribution of stock innovations being symmetrical, the lowest and highest deciles correspond
to stock volatility above 67% per annum. When conditioning upon these extreme innovations,
column (C) reveals that aggregated responses still keep negative signs and the same magnitudes.
To investigate the firm conditions in which leveraged information typically flows from stock to

credit markets, I also estimate specification (19) conditionally upon different credit conditions:

4

(CDS return); = a+ Z [bi + bi’D(Dummy),] (Leverage); x (Stock innovation),
k=0

4 (20)

+
k

cx(CDS return), _; + e,
1

where the first-stage residuals ¢;; proxy the real stock innovations. I interpret the linear combi-
nation Zﬁ:o by (resp. 2220 ka) as a measure of the unconditional (resp. conditional) leveraged
information flow from the stock market to the credit market. To investigate the role of the firm’s
credit quality, I first condition by the credit spread level. I build three dummy variables to allocate
the CDS level variation between the top quintile of the CDS distribution (above 142 basis points,
corresponding approximately to a credit rating equal to or lower than A3/A-), the intermediary
three quintiles (between 142 and 40 basis points), and the lowest quintile (below 40 basis points),
respectively. Similarly, I probe the role of the firm’s level of indebtedness by setting three dummy
variables to allocate the leverage variation between the top quintile of the leverage distribution
(above 0.41), the three intermediary quintiles (between 0.14 and 0.41), and the lowest quintile
(below 0.14).

Table 3 reports estimates for the specification (20). Column (D) shows that the conditioned
flow measure becomes positive when conditioning by low CDS levels. This unexplained positive
response could signal either a low degree of informed trading in the CDS market or the absence of

substantive information concerning credit risk. In other words, top CDS levels seem to impound
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a very substantial part of the leveraged price transmission. This finding could suggest a regime of
informed revision of CDS quotes under conditions of financial stress.

Table 3 reveals a similar phenomenon when conditioning by top levels of indebtedness. The
(unconditioned) response of column (A) increases from —0.462 to —1.215 in column (E), more
than threefold an increase in intensity. Highly leveraged firms seem to produce even more in-
formed revisions of CDS quotes instead of mechanical price transmission, once again suggesting

the occurring of insider trading (Acharya and Johnson, 2007).

5.3 Leveraged information at the firm level

The pooled regression described above forces all firms to have the same dynamic properties,
except as captured by market-conditioning dummy variables. I now estimate separate dynamics
for each firm by allowing for firm fixed effects. To compare the intensity of the leveraged, non-
linear information flow with the direct transmission of information, I also include five lags of
unleveraged stock innovations. This alternative specification allows testing for differences among
nested models at the firm level by running a likelihood ratio (LR) test. The LR test statistic then
measures whether the inclusion of leveraged regressors significantly improves the goodness of fit
of the regression model.

Specifically, I estimate the following specification for each firm i:

4
(CDS return);; = a; + Z [bi,k +b£ k(Leverage),-J] x (Stock innovation); ;¢
k=0

4
+ Z cik(CDS return); ;¢ +e;;
k=1
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where the first-stage residuals ¢;; provide a proxy for the real stock innovations.
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Table 4. Leveraged information: two-stage cross-sectional estimation

In the first stage, I run for each firm i the time-series regression:
4 4
(CDS return);; = a; + Z [bi’k + bﬁk(Leverage);yt} (Stock innovation); ;— + Z cix(CDSreturn); ;¢ +e;j;.  (21)
k=0 k=1
LR measures rejection of the null hypothesis Hy : bf ¢ = 0 (0 < k < 4) by the likelihood ratio test. In the second

stage, firms are ranked into quintiles based on the first-stage estimates of bf = Zé:o bf‘k, QI being the quintile with
the smallest (most negative) estimates and Q5 being the quintile with the largest estimates. The summary statistics
reported for each quintile are the medians (across firms) of the time-series means of the characteristics for each firm.
Within each quintile, p-values across firms are combined via Fisher’s sum of logarithms method. ***, ** and * denote
statistical significance at the 0.1%, 1%, and 5% levels, respectively. Data source: Thomson Reuters.

Panel A: Univariate properties of b and bt

Average b; —0.017 Average bf —1.303
t-statistic (—0.14) t-statistic (—1.74)
LR (p-value) 0.000***

Min —3.2717 Min —142.903
Max 18.000 Max 16.520

Ql Q2 Q3 Q4 Q5
Panel B: Properties of firms in different b* -quintiles
Median bf —-3.216 —0.930 —0.128 0.372 1.679
LR (p-value) 0.000*** 0.000*** 0.094 0.002*** 0.000***
Median CDS level (bps) 59 77 129 97 74
Median firm leverage 0.22 0.22 0.32 0.29 0.20
Median firm size ($bn) 24.06 22.62 17.04 21.19 32.47
Median firm debt ($bn) 7.04 5.90 5.95 7.41 6.54

Table 4 reports estimates for the specification (21). Panel A shows the summary statistics for
the estimated linear responses b;. The mean is —0.017 and statistically insignificant, consistent
with the findings of previous studies (Acharya and Johnson, 2007). By contrast, the mean of
the leveraged response bf is —1.303 and significant, thereby validating the non-linear role of the
leverage. As a robustness check, I also run for each firm an LR test of the null hypothesis Hy :
bﬁ « =0 (0 <k <4). This procedure provides a collection of independent LR test statistics and p-
values. I then use Fisher’s combined probability test to fusion these p-values and to assess whether
the inclusion of leveraged predictor variables improves the model’s goodness of fit. Panel A reveals
that this combined LR p-value is highly significant.

Panel B sorts the firms into quintiles based on their aggregated leveraged response and examine

the median firm characteristics of each. The combined LR p-value turns out to be highly significant
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for four quintiles out of five. Moreover, there is a uniform distribution of firm characteristics
across quintiles. These observations suggest that a specific category of firms does not impound the

leveraged flow of information from stock to CDS markets.

5.4 Co-integration of credit and equity markets

In this section, I now investigate the role of the leverage effect in the co-integration of credit
and equity markets. Equation (13) suggests that the log-CDS price and the leveraged log-stock
price should form a co-integrated system. The intuition is that CDS spread and stock price time
series cannot drift too far apart from the equilibrium because capital structure arbitrageurs will act
to restore the long-run equilibrium relationship.

The testing procedure draws on the VECM approach to co-integration modeling suggested by
Johansen (1988, 1991). Let introduce for each company i the credit-equity log-price process:

_ |m(cps), o)

In(Stock),,

it

A preliminary step consists in checking that the two components of the log-price process are indeed
integrated to the same order. For this purpose, I run systematic unit root tests for nonstationarity.
In the first stage, we then select each firm’s optimal lag length by fitting a VAR model for the

leveraged log-price process:

In(CDS).
X! = n(CDS), . (23)

(Leverage),, - In(Stock),,

2

The order of the VAR, p;, is selected by the Schwarz Bayesian information criterion. In the second

stage, we estimate the following fully specified VECM by maximum likelihood:

Pi
AXf, = nin,_l +) ri_ykAXka +p1 +u,, (24)
k=1
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where II; is the long-run impact matrix, I';, are short-run impact matrices, i is a drift vector,
and u,, = (ui{t,ui)’ are independent 2-dimensional Gaussian disturbances. Assuming Xf ; 1s co-
integrated implies that the rank of IT, can neither be null due to the error correction mechanism
nor equal to 2 due to nonstationarity. As a result, II. must be of rank 1, and there must exist two
vectors @, = (@, a,) and B; = (1,—B,) such that IT, = e, B. In this case, even though Xft is

not stationary, the stochastic deviations from the long-run equilibrium must be stationary around a

potential deterministic trend:
N, = BX +p;t =In(CDS),, — B,(Leverage),, In(Stock),, + p,t ~ 1(0). (25)

We allow for a linear time trend in the co-integrating relationship to accommodate the trending
nature of data like stock prices.

We use Johansen’s (1988, 1991) likelihood ratio statistic to test for the rank of the long-run
impact matrix. Rejecting the null hypothesis that rank (IT,) = 0 validates the existence of a co-

integrating vector B;. We repeat the testing procedure with the symmetric process:

In(CDS). /(Leverage).
YZ — ( )171/( g )l,l ) (26)

In(Stock),,

Finally, we consider an entity i as co-integrated if either an or th, or both processes reject the
null of non-co-integration at the statistical level of 5%.

Table 5 reports co-integration results. In a preliminary step, we run Augmented Dickey-Fuller
tests to verify that the stock price and CDS spread time series share the same order of integration.
To conserve space, we do not present the results of these tests, which provide unambiguous evi-
dence that all the series are /(1) and their first differences 7(0). These results are typical for asset
price time series.

Panel A reports the number of significantly co-integrated firms that qualify for the VECM stage.

We find support for co-integration at the 5% level for 106 entities out of 215, which represents 50%
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Table 5. Co-integration tests results

This table reports co-integrated firms for which the Johansen trace statistic rejects the null hypothesis of non-co-
integration Hy : rank (I1;) = 0 when estimating the VECM AXft = Hin,, X ri‘kAXf,,k +U;+u,, (resp. AYfJ =
H,-thl + ZZ’;I Ff,kAYf,,k + M4; +u,,) by maximum likelihood. A time trend is included in the long-run relation.
Panel A reports the number and proportion of co-integrated entities by threshold of co-integration. ***, ** and *
denote statistical significance at the 0.1%, 1%, and 5% levels, respectively. Panel B reports firm-level sample statistics

computed across all observations. Data source: Thomson Reuters.

p < 0.001 p<0.01"* p < 0.05*
f Firms  Prop. (%) § Firms  Prop. (%) g Firms  Prop. (%) Total
Panel A: number of co-integrated firms

Full sample 51 23.7 80 37.2 106 49.3 215
Basic Materials 4 26.7 4 26.7 5 33.3 15
Consumer Cyclicals 6 17.1 8 22.9 14 40.0 35
Consumer Non-Cyc. 3 13.0 6 26.1 9 39.1 23
Energy 3 15.8 7 36.8 8 42.1 19
Financials 19 52.8 23 63.9 26 72.2 36
Healthcare 2 8.7 9 39.1 13 56.5 23
Industrials 9 30.0 12 40.0 12 40.0 30
Technology 1 6.2 3 18.8 6 37.5 16
Telecommunications 0 0.0 1 333 3 100.0 3
Utilities 4 26.7 7 46.7 10 66.7 15

5t perc.  Median Mean 75 perc. 95" perc. SD Obs.

Panel B: firm-level statistics of co-integrated firms

Firm CDS level (bps) 26 75 117 130 309 204 241,054

Firm leverage 0.08 0.25 0.32 0.42 0.80 0.22 241,054

Firm size ($bn) 4.50 20.08 49.20 58.64 187.60 68.63 241,054

Firm debt ($bn) 1.24 6.91 42.05 16.86 358.51 117.00 241,054

Panel C: equity and CDS returns of co-integrated firms

Equity daily return (%) —2.81 0.05 0.02 0.86 2.73 2.14 241,054

CDS daily return (%) —3.44 0.00 —0.02 0.06 3.41 5.47 241,054

of the firms. A third of the sample does not hint at co-integration at all, while 20 firms barely miss
the 5% rejection threshold. The Financials, Telecommunications, and Utilities business sectors
appear the most co-integrated, with co-integration ratios close or above 70%. Without surprise,
Table 1 reveals that these three sectors are also the most dependent on external debt financing, with
average debt-to-asset ratios well over 40%. This finding is the first hint of the role of the leverage
effect in the integration of credit and equity markets.

Panel B reports summary statistics for co-integrated entities at the 5% threshold. The average
debt-to-asset ratio (resp. CDS level) in this sub-sample is 3 points (resp. 4 basis points) higher.

In the case of deeply co-integrated entities at the 0.1% level, unreported statistics show that this
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leverage differential is even more acute with an excess 4.5 points (resp. 14 basis points). With
an average market capitalization of 44.58bn versus 49.2$bn, the size of co-integrated firms seems
on par with the overall sample. Their indebtedness, however, is much more pronounced with an
average debt size of 42.1$bn versus 27.9$bn. Everything happens as if an increase in corporate
leverage ramps up market activity in capital structure arbitrage. These additional findings provide
reliable evidence that one of the leading market effects of corporate leverage is to intensify the
integration between the credit and equity markets.

Panel C reports summary statistics for daily stock and CDS returns of co-integrated firms.
While stock returns statistics are similar to the full sample, the standard deviation of CDS returns
is much more pronounced, with 5.47% versus 4.53%. This finding is even more spectacular for
highly co-integrated entities with an (untabulated) standard deviation at 6.85%. Without surprise,
some excess volatility in CDS prices appears necessary to stimulate capital structure arbitrage

activity.

5.5 Contributions to price discovery

I now study the contribution of each market to the price discovery process. The co-integrating
feature suggests adopting the classical vector error-correction model (VECM) approach to price
discovery formalized by Gonzalo and Granger (1995). The intuition is that error-correcting adjust-
ments to transitory shocks must occur in either the stock market or the CDS market to maintain the
long-run equilibrium relationship between both time series.

In the first stage, I test at the level of each firm i the co-integration of the CDS and stock
price series following the methodology of Section 5.4. For those entities which are significantly
co-integrated at the 5% threshold, I retrieve the co-integrating residuals ﬁ“ and the lag order p,
providing the optimal fit for the underlying VAR process.

In the second stage, I measure the contribution of each market to the price discovery process
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by estimating the following VECM by OLS:

pi pi
(CDS return),, = oy 7,,_, + Z b, (Leverage),, (Stock return),, , + Z ¢, (CDS return),, , + !

i, it?
k=1 k=1 !
. i Pi (CDS return)

(Stock return),, = o, m,,_, + Z b, (Stock return),,_, + Z Cou
k=1 k=1

it—k 2
u,
(Leverage), it

(27)

where the first-stage co-integrating residuals ﬁi’, provide error-correcting terms, the lagged stock
and CDS returns capture market imperfections, and ul{’tz are 1.1.d. disturbances. If the stock market
is contributing significantly to the price discovery process, then ¢, should be negative and sta-
tistically significant as the CDS market continuously adjusts to absorb transitory noise frictions.
Conversely, if the CDS market dominates the price discovery process, ¢, should be positive and
statistically significant as the stock market continuously responds to transitory shocks.

Comparing the adjustment coefficients &, and &, allows estimating the market that least adjusts
to transitory deviations. This market will stand as the closest to the fundamental value of credit
risk. Following the literature on credit price discovery (e.g., Narayan, Sharma, and Thuraisamy,
2014), I use the component share (CS) metric to measure the relative shares of each market in the

permanent component:

(0]
o — oy’

o

CS _—
o — 0

and CS (28)

cDS " Stock *

provided that &; # @12 1 also rely on the information share (IS) metric to measure the relative
adjustment speed of each market to innovations in the permanent component. The lower bound

and upper bound of information share are given as follows (Hasbrouck, 1995):

Low a22(°'12 — c’122/0'22) w (o — 061612/61)2

IS = IS =
0307 —2040,012 + 005 ;0% —2040,012+ 0505

(29)

2Notice that 0 < CS.ps < 1 as soon as & and &, have the expected negative and positive sign, respectively.If
0y = 0, there is no evidence of price discovery in the stock market (CS_,; = 1). If & = 0 there is no evidence of price
discovery in the CDS market (CS_, = 0).
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where Var(u}) := o2, Var(u?) := 67, and cov(u},u?) := 6. We follow the standard practice in

the price discovery literature (e.g., Baillie et al., 2002) to average the lower and upper bounds:

Low Up Low Up
IS . +IS IS, . +IS
DS — CDS 2 CDS ’ and ISStOCk p— Stock 2 Stock . (30)

IS

Table 6 reports price discovery metrics for the stock and CDS markets. We restrict the analysis
to the sub-sample of 106 firms that reject the null hypothesis of non-co-integration at the 5%
threshold.

Panel A reports the stock market’s price discovery metrics. For the stock market to significantly
impact the efficient price of credit, the adjustment coefficient &, must be negative and statistically
significant. Co-integrated firms are thus ranked into deciles based first on their increasing compo-
nent share, and second on their decreasing leverage. For more than half of the firms, a component
share close or equal to 100% indicates a high degree of proximity of the stock market with the
permanent component of the credit-equity price system. As a result, the stock market monopolizes
the price discovery process with a market share of 74.8% on average. To a lesser extent, the in-
formation share metric confirms the informational leadership of the stock market, with an average
market share of 55.5%. This result is consistent with the CDS “sideshow” hypothesis (Hilsher,
Pollet, and Wilson, 2015) for which informed traders globally favor the stock market to the CDS
market because of transaction costs. We notice that the last three deciles (D8-D10) concentrate
firms with average leverage well below the overall sample mean (0.29).

Panel B reports the smaller set of firms whose CDS market heavily weighs on the permanent
component of the credit-equity price system. In this case, the adjustment coefficient &, must
be positive and statistically significant. We thus focus on the 49 firms whose &, turns out to be
significant at the 5% level. Confined to the last three deciles (D8-D10), Panel C reveals strong
evidence for the role of the leverage effect. With a component share near 100%, CDS prices are

closely aligned with the fundamental value of credit as they preempt the bulk of informed trading.
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Table 6. CDS and equity market shares of the price discovery process

This table reports price discovery metrics for the stock and CDS markets. In the first stage, we select the co-integrated firms for which the Johansen trace statistic
rejects the null of non-co-integration at the 5% threshold and retrieve error-correcting terms 1),,. In the second stage, we estimate the following VECM by OLS:

i,

k=1 k=1

Pi Di
(CDSreturn),, = o, 7, , + Y b, (Leverage), (Stock return), _, + )" ¢, (CDS return),,_, + uil,,,

27
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k=1 k=1

We assess the statistical significance of the adjustment coefficients &, and &, via robust standard errors corrected for heteroscedasticity and serial correlation

(Newey-West, 1987). Panel A reports co-integrated firms for which &, is significant at the 5% level, ranked into deciles based on the second-stage estimate of the

stock market’s component share, CSg,_, . Panel B reports firms for which &, is significant at the 5% level, ranked into deciles based on the second-stage estimate of

the CDS market’s component share, CS_; . Panel C reports firms for which &; is significant at the 5% level, ranked into deciles based on the second-stage estimate

of the CDS market’s information share, ISy, . The summary statistics reported for each quintile are the averages (across firms) of the time-series means of the
characteristics for each firm. Data source: Thomson Reuters.

ko2
2
(Leverage),, it

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Total
Panel A: stock market
Average component share, CSg,_, (%) 0.0 26.8 53.5 80.3 96.8 100.0 100.0 100.0 100.0 100.0 74.8
Average information share, IS;_, (%) 7.4 25.7 49.2 61.4 76.4 65.8 67.9 66.0 65.3 78.6 55.5
Average firm leverage 0.41 0.30 0.21 0.30 0.58 0.45 0.31 0.23 0.17 0.08 0.31
Average CDS level (bps) 142 108 87 121 192 131 141 88 62 51 115
Number of firms 11 11 11 11 11 11 11 11 11 7 106
Panel B: CDS market’s component share
Average component share, CS_ ¢ (%) 7.0 13.8 23.6 38.3 50.0 50.0 71.0 100.0 100.0 100.0 54.5
Average firm leverage 0.32 0.17 0.44 0.18 0.20 0.41 0.29 0.17 0.34 0.60 0.31
Average CDS level (bps) 82 78 174 58 94 155 115 51 134 184 111
Number of firms 5 5 5 5 5 5 5 5 5 4 49
Panel C: CDS market’s information share
Average information share, IS (%) 18.6 30.9 40.6 47.2 53.4 59.2 75.6 91.2 96.5 99.1 60.5
Average firm leverage 0.20 0.21 0.27 0.39 0.35 0.40 0.43 0.38 0.18 0.24 0.31
Average CDS level (bps) 63 98 133 105 102 195 84 154 66 108 111

Number of firms 5 5 5 5 5 5 5 5 5 4 49




The top decile (D10) contains highly-leveraged firms with leverage above the 95" percentile (0.58)
of the average debt-to-asset distribution by firms. In this decile, the average CDS level rises above
200 basis points, a level corresponding to a credit rating lower than Baa2/BBB.

Panel C examines the same set of firms as Panel C from a slightly different standpoint. Whereas
Panel C focuses on the CDS market’s relative avoidance of noise, the focus now shifts to the
relative speed of adjustment to innovations in the permanent component of credit. The average
information share of the CDS market (60.5%) is in line with market shares reported in the recent

study by Kryzanowski, Perrakis, and Zhong (2017).

6. Conclusions

A parsimonious structural framework is sufficient to build a theoretical model connecting the
firm’s financial leverage and the variance-equity elasticity. This elasticity amounts to twice the
debt-to-assets ratio—a standard measure of the corporate leverage. This key feature enables putting
the so-called “leverage effect” into a credit risk perspective, thus giving its full meaning to a four-
decade-old term (Black, 1976). It provides a non-linear mechanism of information transmission
between the equity and credit markets.

An empirical analysis over a large dataset of S&P 500 firms and an extended timeframe (2008-
2018) highlights the non-linear role of the corporate leverage in the transmission of price informa-
tion between stock and CDS markets. The study shows that such activity is intense and robust to
market conditions. It affects all firms uniformly, irrespective of their level of indebtedness or their
CDS spread quoted in the market. As the corporate leverage increases, it stimulates market activity
in capital structure arbitrage and strengthens the co-integration of credit and equity markets. For
co-integrated firms, the strength of the long-run equilibrium between CDS spread and stock price
correlates with the debt-to-asset ratio.

In line with previous studies, two-thirds of the firms in the sample see their price discovery
process widely dominated by the equity market, with stocks impounding more than 70% of the

process. However, I find a significant portion of highly-leveraged firms for which half of the
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discovery process or more is occurring in the CDS market. The leverage effect could explain
some of the pricing discrepancies observed between stock and CDS markets. The recent literature
usually attributes these mispricings to various CDS market inefficiencies such as illiquidity or
opaqueness. By contrast, the leverage effect provides an economic rationale for the limits to capital

structure arbitrage and the lack of integration between equity and credit markets.
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Appendix A. Proof of Lemma 1

A standard application of Ito’s lemma shows that the firm’s asset volatility is linked to the

equity instantaneous volatility by the relationship:

as

S=2=
o=y

o, V. (A1)

This can be differentiated with respect to the equity market value to get:

do d 14 as 1% S-V
535 (ves) = Ty xag o g A

where we have used the fact that the firm’s business risk, o, , is a constant independent from S and

the firm’s capital structure. We can apply the chain rule

3s, 35,9V S,

— 2T _Pw A3
ds oV as S,’ (A3)
which yields after substitution into Equation (A2):
0 S V-8
O _woy_ 5o (Ad)

ER vV g

Vv

Equation (A1) also enables to express the unknown asset volatility 6, = 6S/(S, V) which can now

be eliminated from Equation (A4). Noticing that the debt-to-asset ratio / = (V —S)/V, we find:

do SS
58_5 =0 ng —ol. (A5)

Vv

which yields Equation (3) in a straightforward way.

It remains to be checked that the adjusting term €, = (SS,,,)/ S‘% to the leverage is bounded on
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[V;00). In the structural setting of Duffie and Lando (2001), the bankruptcy boundary is given by:

___ Yy

while the optimal equity market value is available as an explicit function of the asset value:

-7
1 (;) ] , (A7)

Vv -7
S=AV AV, (7) +C

B

where:

—o2/2+ —62/2)% +2rc2
0 C = (9_1)57 yi= Hy v/ \/(»uv v/) V.

A=
r—u,’ r 2

To prove (a), simple calculations show that when V' goes to «, we have § ~ AV, S, ~ A, and

S,y ~ 1/V+2 50 that:
$S, 1
s2 " avri

— 0. (A8)

To prove (b), we notice that when V tends to V,, there is an indeterminate form 8. Applying

I’Hopital’s rule yields:

S 1
lim g = lim — - lim S,, = lim lim S, = 2. (A9)

VoV Vv ST vy vovg 28, vovg

Table 7 reports numerical simulations for €, computed with the numerical assumptions from Duffie
and Lando (2001). In accordance with the previous asymptotic results (A8) and (A9), g, is always
less than half the debt-to-asset ratio. It takes low asset values and deep states of financial distress

to produce values of the same magnitude as the firm’s leverage.
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Table 7. Numerical magnitude of the financial leverage adjustment ¢,

This table reports the numerical magnitude of €, as a function of the firm’s asset value V for five different bankruptcy
boundaries corresponding to five different levels of asset volatility. The corresponding debt-to-asset ratio ¢ is also
reported. Pricing assumptions are those of Duffie and Lando (2001): annual debt interest charge ¢ = 8.00, corporate
tax rate O = 0.35, bankruptcy costs 0.3, payout rate 6§ = 0.05, risk-free rate r = 0.06 per annum, expected asset growth
rate U, — 63/2 = 0.01 per annum.

Bankruptcy boundary
o, =0.25 c, =0.20 o, =0.15 o, =0.10 o, =0.05
V, =45.34 V, =49.30 V, = 54.88 V, = 63.37 V, =178.01
|4 g, 14 g, 14 g, 14 g, 14 g, 14

0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00
50 044 0.99 049 1.00 - -

60 0.35 0.93 0.38 0.96 043 0.99 - - - -
80 022 0.82 023 0.84 0.24 0.88 027 0.92 044 1.00
100 0.15 0.73 0.15 0.75 0.14 0.77 0.13  0.82 0.09 0.89
120 0.11  0.65 0.10 0.67 0.09 0.69 0.06 0.72 0.01 0.78
140 0.08 0.59 0.07 0.60 0.05 0.62 0.03 0.65 0.00 0.70
160 0.06 0.53 0.05 0.55 0.04 0.56 0.02 0.59 0.00 0.63
180 0.05 049 0.04 0.50 0.03 0.1 0.01 0.53 0.00 0.58
200 0.04 045 0.03 046 0.02 047 0.01 0.49 0.00 0.53

Appendix B. Proof of Lemma 2

In the sequel, I simplify the argument of Hagan and Woodward (1999) to prove Equation (5) by
singular perturbation theory. For the sake of notational simplicity, I will assume zero interest rates.
The stock pays no dividends, which implies a zero drift under the risk-neutral probability measure

associated with the money market account. The stock price diffuses according to the dynamics:

The undiscounted risk-neutral value C(S,7) = E{(S7 —K)"|S} of a European-style call option
with strike K and time to maturity 7" evolves according to the Black-Scholes-Merton partial differ-

ential equation (PDE):
ac 1 ,

—— +-0°(9)

SZE —
ot 2

=0 B2
subject to appropriate boundary and terminal conditions.
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* Re-scaling procedure. Denoting f : x — x0(x) and € := f(K) < 1, I introduce the follow-

ing change of variables:

T S—K
r::/ oa(u)du,  x:= — (B3)
t

in order to re-scale the call value as C(7,x) := C(t,S) /€. The new PDE in the variables (7,x)

verified by the re-scaled call value is as follows:

dC 114 K+ex)d*C

Tt 2 Ky oV B4
Expanding in power series of €, we note that:
2K +xe) = f2(K) (1 + 2%[1;)%) +0(&?). (BS)

Substituting in Equation (B4), the PDE can now be written at first order in €:

oC 19°C 9%

oC 1 _ 2
5 292 VXE 2 +0(g%), (B6)

where v := f/(K)/f(K). Expanding the re-scaled price C in power series of € as C* +eC! +

O(€?), we are led to solve the following system of PDEs at first order in &:

9 _19%C°
8}: 2 8xf N
aCc' 19*C! .y 9*C?
or 292  ox’

=0, C0(0,x) = xt,
(B7)

C'(0,x) =0.

Solving the re-scaled problem. Standard techniques apply to solve the first heat-like PDE.

The solution for C° is given by:

C(1,x) =xN (%) +4/ %e—xz/zﬂ (BS)
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as it can be checked by means of the following elementary calculations:

~0 2,0 —x2/21 ~0 —x2/21
aizN(i)’ ag:e 7 A , (BY)
ox VT dx V2nt T 2\2nt
In the same way, the solution for Clis given by:
~ e—xz/ZT
C(T,x)=vVvxT , B10
(7,%) Wir (B10)
as it can be checked by means of the following elementary calculations:
IC'  (vaT4vad)e /2 02C"  (=3vaxT4vad)e ¥/ BI1)
0T 41271 ’ dx? 21V/27T
Moreover, we notice that:
C'(1,x) = TanCO (B12)
e ot

Substituting Equation (B12) in the re-scaled price expansion of C, we obtain the solution for

the re-scaled price at first order in €:

~ ~ ~0 ~
C(t,x) =C%1,x) + swxaa% +0(e*) =C° (t+eTva+ O(€?),x) . (B13)

Solving for the option price in the physical space. The unscaled call price may then be

deduced as follows:
C(1,5) = eC(t,x) = eCO(t(1 +evx) + 0(e?),x) = C° (e27(1 +evx) + O(e*),ex) . (B14)
Noting that ex = § — K, we obtain the option price with respect to physical variables:
C(t,8) ~C°(t*,S — K), (B15)

where 7" ~ €27 (14 v(S—K)). We also note that € = f(K) may be developed around the
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midpoint (K +S)/2 for spot prices close to the call strike K:

! ( K+
ZKZZ(K—JFS) f<T>K S) | +o(k—s B16
P =1 (57 ) (14 (s (K9 | +olk =), (B16)
which gives at leading order:
T = 1f? (K—;d) +O0(K —-S). (B17)

The Black-Scholes-Merton case. The preceding whole line of reasoning may be applied
to the pure Black-Scholes model, which means performing the same calculations for the
following stock price dynamics:

dS; = 6, S, dw;, (B18)

where G, is the constant Black-Scholes implied volatility at strike K and expiry 7. In this
specific case we note that f is the identity function while 7= 62(T —1), v=1/K and € =K.
Applying Equation (B15) with the previous parameters, the Black-Scholes price is then given

by C°(7* ,S — K) where we have at leading order:

BS’

2
'~ 62(T —1) (?) +O0(K—9). (B19)

BS K

Linking local volatility with implied volatility. As the option price observed in the market is

both given by the local volatility model (B15) and the Black-Scholes model, we can write:

CO(t*,S—K) =C°(t* ,S — K). (B20)

BS’

As C0is strictly increasing in the re-scaled time to maturity variable 7, we thus obtain 7% =

T, Substituting Equations (B17) and (B19) in this last relationship, we get at leading order
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the following relationship which is valid for stock prices in the vicinity of the strike price:

~ K+S r
63T —1) ~ c? g+ / o (u)du.
K 2 p
This is Equation (5).

Appendix C. Proof of Proposition 1
By definition of the variance-equity elasticity:

do?/o?> 2 do
ey = ————7 = —
ds/s

o dlnS’

(B21)

(CH

But Lemma 2 ensures that the slope of the local volatility o(+) at S is twice the slope of the implied

volatility 6, (-) at K, ignoring the factor @,. As a consequence, we have:

do
dInK’

do

dIn§

£l

which yields after substitution of the local volatility slope in (C1):

4 do
a,0 dlnkK’

ev:

Substituting the structural formulation (7) of the implied volatility skew into (C3) yields:

4
[0

(-5 (e, ) =—2(¢-e0),

€y —

7O

which is Equation (8).
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Appendix D. Proof of Lemma 3

A natural option structure matching the moments of a default swap instrument is the credit
risk reversal (Ilinski, 2003). This optional structure combines long out-of-the-money put options
with short at-the-money call options. The out-of-the-money put option is intended to replicate the
default swap payoff on the occurrence of a credit event, that is, upon a jump to zero of the stock
price. Simultaneously, the at-the-money call option is intended to provide exposure to the third
moment of the implied volatility surface. It turns out that a specific choice for the geometry of the
credit risk reversal structure offers no entry cost and as little convexity as possible between the two
option exercise prices.' This last feature ensures an approximate static replication of the default
swap instrument.

To match the first two moments of a binary default swap,'# let us show that once the put strike,
K, has been chosen arbitrarily, the call strike, K., and the put (resp. call) quantity n, (resp. nc)

should be chosen as follows:

K. = F?/K,,
np = Fr/Kp, (D)
n.=—1.

Hedging the structure with forward contracts, we can assume no dividends, no carrying costs as
well as no implied volatility skew for the sake of simplicity. Let define P := n,,p — c as the upfront
premium for the credit risk reversal, where p (resp. c) is the put (resp. call) theoretical price. The

usual Black-Scholes formulae can be used to calculate this upfront cost:

P = [n,K,N(d;) —n,FrN(dy) — FrN(dy) — K.N(dy)]e™""
= [(npKp — Fr)N(dy) — (npFr — K.)N(dp)]e™"" (D2)

:O’

131t is still possible to use more complex structures, such as combinations of risk reversals or put spreads, to match
the higher-order sensitivities of the default swap instrument more closely.
14 A binary default swap instrument is an instrument making a single payment of 1$ in case of a default event.
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where di = In(Fr /K.)/(6v/T) +0+/T/2 and dy = dy — 6+/T. Similarly, the convexity y of the

credit risk reversal is zero since: !>

N'(d In(Fr/K.)+1In(K,/F 21
Ye ( 1) —exp| — Il( T/ C)+ Il( P/ T) — exp Ill’lp :np' (D3)
2 2

Let us now consider the expected payoff of the delta-hedged credit risk reversal upon a default
event, denoted L. This expected loss appears to be tightly constrained by the credit risk reversal
geometry. Indeed, in case of a jump to zero of the stock price, the delta-hedged credit risk reversal

pays off the put notional n,K, minus its initial delta § F in cash:

where 0, (resp. &) is the initial hedge ratio of the put (resp. call). Denoting 519 (resp. 8?) the delta
of the put (resp. call) option struck at Fr, the call-put parity yields 5 — 519 = 1. With a strike K,

sufficiently close to Fr, we have n,, 89 — 82 ~ 1. Substituting into Equation (D5) yields:

C

L~ [ny(8) — 8p) — (87 — &) Fr. (D5)

Recall now that 8 /dK = —yFr /K then gives the sensitivity of the delta in the Black-Scholes
model. Applying this general result for K, and K. sufficiently close to Fr, a first-order Taylor

expansion yields:

80, — 8, ~ —Fr7, In(Fr/Kp),

50,c — 5c ~ —FT]_/C ln(FT/Kc),

(D6)

where 7, (resp. 7,) is the average convexity between Fr and K, (resp. K.). Substituting into

Equation (DS5), the expected payoff upon default turns out to depend explicitly on the log-distance

15The Black-Scholes convexity is ¥, = 7. = N'(d1)/(Soov/T), where N'(x) = exp(—x%/2) /\/2.
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between the strikes:

L~7yFIn(K./K}), (D7)

where ¥ = npY, =7, is the average convexity between the strikes.
In the presence of an implied volatility skew &, > G,,,, > Ok, the upfront premium of the credit
risk reversal has to be locally adjusted for the put (resp. call) implied volatility 0, (resp. ;). At

first order, the adjustment cost to the premium is:

~

(GP - 8ATM) XnpVp — (8ATM - 66) X Ve, (D8)

where v, (resp. V.) is the put (resp. call) sensitivity to volatility'6 calculated at O, Using the
fact that n,V, = n,6,,, YpF#T = G, VF#T = V,, the upfront premium becomes:
P~ (G, —06.)G,;, YF{T. (DY)

Finally, the fair spread s, of a binary default swap instrument of maturity 7" may be assimilated
to the annualized premium to be paid for protection, P/T, against the expected payoff upon default,

L. Dividing Equations (D7) and (D9), the fair spread is given by:

. 0, — O
S, L

T ATM m (D10)

Substituting Equation (D10) into the standard credit identity s, = A, x (1 —R), where R is the

expected recovery rate on debt, yields Equation (9).

Appendix E. Proof of Proposition 2

Letting K converge to S in Equation (5) shows that the implied volatility and the local volatility

coincide at the money. Inserting 6,,,, = O, 0 and substituting Equation (7) for |X,| into Equa-

16The Black-Scholes sensitivity to the implied volatility & is given by GyFAT .
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tion (9) yields:
A.=—1—07, (ED)

which leads to:
_do?

= (E2)

An immediate consequence in terms of elasticity is e, =e,.
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